Comparison of different threshold values for a wavelet designed attack sensor
نویسندگان
چکیده
Wavelet transform has emerged recently as a tool to detect web traffic anomalies. Under the assumption that an attack produces a substantial variation on the web traffic, to identify anomalies wavelet based methods consider a threshold value for deciding if wavelet coefficients are associated to anomalies or not. This paper explores different strategies to define the threshold value in association to the bidimensional discrete wavelet transform. Four strategies have been tested (MAD, AD, κL, MM), being MM a new heuristic proposed in this work. Simulations show that κL and AD present quite good results with the compromise of saving computational cost, while MAD and MM are computationally expensive.
منابع مشابه
Comparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions
There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...
متن کاملA Wavelet-based Spoofing Error Compensation Technique for Single Frequency GPS Stationary Receiver
Spoofing could pose a major threat to Global Positioning System (GPS) navigation, so the GPS users have to gain an in-depth understanding of GPS spoofing. Since spoofing attack can influence position results, spoof compensation is possible through reducing position deviations. In this paper, a novel processing technique is proposed and the wavelet transform is used to eliminate the impact of sp...
متن کاملA COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملRobust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks
Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012